Skip to contents

Given some samples it distribute them in several batches, trying to have equal number of samples per batch. It can handle both numeric and categorical data.

Usage

design(pheno, size_subset, omit = NULL, iterations = 500, name = "SubSet")

Arguments

pheno

Data.frame with the sample information.

size_subset

Numeric value of the number of sample per batch.

omit

Name of the columns of the pheno that will be omitted.

iterations

Numeric value of iterations that will be performed.

name

A character used to name the subsets, either a single one or a vector the same size as n.

Value

The indices of which samples go with which batch.

See also

The evaluate_* functions and create_subset().

Examples

data(survey, package = "MASS")
index <- design(survey[, c("Sex", "Smoke", "Age")], size_subset = 50,
                iterations = 10)
#> Warning: There might be some problems with the data use check_data().
index
#> $SubSet1
#>  [1]  16  19  23  27  28  35  37  42  54  64  74  86  90  91  92  94  96 100 106
#> [20] 116 119 120 122 124 127 128 136 137 139 154 156 159 178 181 202 204 205 207
#> [39] 208 209 212 218 219 222 223 226 229 237
#> 
#> $SubSet2
#>  [1]  11  13  24  26  34  45  47  58  59  69  75  83  84  88  89  97 103 109 110
#> [20] 118 129 130 142 145 146 149 152 153 160 162 166 171 175 179 184 187 191 193
#> [39] 194 197 199 200 210 220 228 231 234 235
#> 
#> $SubSet3
#>  [1]   1   9  12  14  15  17  20  21  29  30  31  38  43  44  46  48  52  53  55
#> [20]  60  67  76  79  80  82  95  98 107 112 133 138 144 147 150 151 157 169 174
#> [39] 176 188 190 198 206 216 221 227 236
#> 
#> $SubSet4
#>  [1]   2   8  10  18  22  25  32  33  36  39  40  41  49  51  56  61  62  63  68
#> [20]  72  73  93  99 101 104 108 113 126 131 132 134 140 141 143 148 163 164 165
#> [39] 167 180 182 186 189 201 203 224 232
#> 
#> $SubSet5
#>  [1]   3   4   5   6   7  50  57  65  66  70  71  77  78  81  85  87 102 105 111
#> [20] 114 115 117 121 123 125 135 155 158 161 168 170 172 173 177 183 185 192 195
#> [39] 196 211 213 214 215 217 225 230 233
#>