Looks for the median absolute deviation values in each subgroup.
Value
A vector with the mean difference between the median absolute deviation of each group and the original mad.
See also
Other functions to evaluate samples:
evaluate_entropy()
,
evaluate_independence()
,
evaluate_index()
,
evaluate_mean()
,
evaluate_na()
,
evaluate_orig()
,
evaluate_sd()
Other functions to evaluate numbers:
evaluate_mean()
,
evaluate_na()
,
evaluate_sd()
Examples
data(survey, package = "MASS")
index <- design(survey[, c("Sex", "Smoke", "Age")], size_subset = 50,
iterations = 10)
#> Warning: There might be some problems with the data use check_data().
# Note that categorical columns will be omitted:
evaluate_mad(index, survey[, c("Sex", "Smoke", "Age")])
#> Age
#> 25.90814